Telegram Group & Telegram Channel
Как вы работали бы с несбалансированным набором данных?

В несбалансированном наборе данных объектов одного класса намного больше, чем объектов другого. Например, в датасете с транзакциями только 400 являются мошенническими, а 300 тысяч — нет. Из-за этого модель может хуже определять мошеннические транзакции.

Чтобы бороться с этим, используют несколько подходов:
🟡 Undersampling. Удаление некоторого количества примеров преобладающего класса.
🟡 Oversampling. Увеличение количества примеров класса, который находится в меньшинстве.
🟡 Комбинирование undersampling и oversampling.
🟡 Создание синтетических данных. Для этого можно использовать SMOTE (англ. Synthetic Minority Oversampling Technique). Алгоритм генерирует некоторое количество искусственных примеров, похожих на имеющиеся в меньшем классе.

Также можно применять взвешивание классов, при котором модель будет сильнее штрафовать за ошибки на меньшем классе. Кроме того, ансамблевые методы могут помочь уменьшить эффект несбалансированности.



tg-me.com/ds_interview_lib/99
Create:
Last Update:

Как вы работали бы с несбалансированным набором данных?

В несбалансированном наборе данных объектов одного класса намного больше, чем объектов другого. Например, в датасете с транзакциями только 400 являются мошенническими, а 300 тысяч — нет. Из-за этого модель может хуже определять мошеннические транзакции.

Чтобы бороться с этим, используют несколько подходов:
🟡 Undersampling. Удаление некоторого количества примеров преобладающего класса.
🟡 Oversampling. Увеличение количества примеров класса, который находится в меньшинстве.
🟡 Комбинирование undersampling и oversampling.
🟡 Создание синтетических данных. Для этого можно использовать SMOTE (англ. Synthetic Minority Oversampling Technique). Алгоритм генерирует некоторое количество искусственных примеров, похожих на имеющиеся в меньшем классе.

Также можно применять взвешивание классов, при котором модель будет сильнее штрафовать за ошибки на меньшем классе. Кроме того, ансамблевые методы могут помочь уменьшить эффект несбалансированности.

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/99

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.

Библиотека собеса по Data Science | вопросы с собеседований from fr


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA